Представительство Всемирной Ассоциации Традиционного Винг Чунь Кунг Фу в Украине и по СНГ
Representative Office of the World Wing Chun Kung Fu Association in Ukraine and CIS

Наука, техника, генетика. Новости и просто интересное.

На страницу Пред.  1, 2, 3 ... 5, 6, 7 ... 9, 10, 11  След.
Начать новую тему   Ответить на тему    Список форумов Wing Chun -> Общение
Наука, техника, генетика. Новости и просто интересное.
Автор Сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 25.02.2018, 00:57    Заголовок сообщения: Ответить с цитатой

https://www.youtube.com/watch?v=IFIfTuB-2w8   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 26.02.2018, 16:38    Заголовок сообщения: Ответить с цитатой

Как лейкоциты добираются до места воспаления?
Как известно, с воспалением в нашем теле борются белые кровяные клетки, лейкоциты. Но как они добираются до очага воспаления?


Лейкоциты могут самостоятельно двигаться, проникать сквозь стенки капилляров и находиться в межклеточном пространстве, но обычно они находятся в нашей крови. Когда же случается инфекция и воспаления они выходят наружу и отправляются к месту воспалению. Но как они покидают капилляр? В следующем ролике вы можете увидеть, как действуют лейкоциты. На видео это большие клетки, которые плывут в кровяном потоке. Вы можете увидеть, как один из лейкоцитов вдруг замирает на месте, а потом буквально выходит наружу. Вслед за ним к тому же самому месту подплывают еще несколько белых кровяных телец. Очевидно, что в капилляре есть место, через которое они могут пройти.
https://www.youtube.com/watch?v=U8mQtToZiTc   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Stasus



Зарегистрирован: 12.01.2016
Сообщения: 680

СообщениеДобавлено: 27.02.2018, 23:35    Заголовок сообщения: Ответить с цитатой

Израильские физики успешно создали в лабораторных условиях ускоряющийся искривленный луч света, используя лампу накаливания.
https://www.popmech.ru/science/news-406112-uchenye-vpervye-smogli-uskorit-iskrivlennyy-luch-sveta/   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение Отправить e-mail
Stasus



Зарегистрирован: 12.01.2016
Сообщения: 680

СообщениеДобавлено: 12.03.2018, 15:14    Заголовок сообщения: Ответить с цитатой

Двигатель для космолета: на чём люди полетят в дальний космос.
https://www.popmech.ru/technologies/412692-dvigatel-dlya-kosmoleta-na-chyom-lyudi-poletyat-v-dalniy-kosmos/   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение Отправить e-mail
Stasus



Зарегистрирован: 12.01.2016
Сообщения: 680

СообщениеДобавлено: 12.03.2018, 15:18    Заголовок сообщения: Ответить с цитатой

Как извлекают энергию из приливов.
https://www.popmech.ru/technologies/11543-cerfing-na-teravatt-volny/   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение Отправить e-mail
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 15.03.2018, 16:07    Заголовок сообщения: Ответить с цитатой

Кто знает, как бы сложилась история освещения, если бы однажды у американского физика Уильяма Кулиджа не заболел зуб.

Зубная боль — вещь неприятная, и вряд ли в этой неприятности можно найти какие-то положительные стороны. Однако некоторым это удается. Кто знает, как бы сложилась история освещения, если бы однажды у американского физика Уильяма Кулиджа не заболел зуб.

Лампа накаливания знакома практически каждому современному человеку. Основной ее элемент — вольфрамовая нить, которая при нагревании током раскаляется и начинает сиять, заливая мягким теплым светом окружающее пространство. Так было не всегда. Лампочка Эдисона в момент изобретения (в 1878 году) была далека от совершенства. Нить накаливания из обугленной бумаги часто перегорала, и в 1882 году Льюис Латимер запатентовал процесс изготовления нитей накаливания из обугленных хлопковых нитей, что увеличило долговечность ламп. Но этого было мало.

Идею повысить энергоэффективность с помощью нити из тугоплавких металлов выдвинул наш соотечественник Александр Лодыгин. В заявке, поданной в патентное бюро США в 1892 году, он подробно описал, как изготавливать нить накаливания из платины, хрома, а также упомянул вольфрам как самый подходящий материал, хотя и отметил сложности в его обработке. В итоге вольфрам все-таки нашел свое место в лампах, несмотря на низкую пластичность. Порошок вольфрама смешивали с органическим клейстером (обычно крахмальным), полученную массу выдавливали через фильеру, а затем тонкую нить прокаливали, удаляя органическое связующее.

Однако остатки органики приводили к появлению на стенках колбы слоя углерода, и лампа быстро «темнела». В 1905 году этой проблемой занялся новый сотрудник исследовательской лаборатории General Electric в городке Шенектеди (штат Нью-Йорк) Уильям Кулидж, выпускник Массачусетского технологического института, получивший в 1899 году степень доктора наук в Университете Лейпцига. Перед ним поставили на первый взгляд неразрешимую задачу разработать связующее, не содержащее углерода.

Решение пришло неожиданно. Сидя в кресле стоматолога, Кулидж наблюдал, как врач смешивает серебро со ртутью, изготавливая пластичную массу — амальгаму серебра, которой тогда пломбировали больные зубы. По словам физика, он был поражен пластичностью полученной массы: «Я сразу задумался, нельзя ли использовать амальгаму какого-нибудь металла в качестве временного связующего для вольфрама» После множества экспериментов с различными металлами решение было найдено: вольфрам смешивался с амальгамой кадмия, из полученной пластичной массы изготавливалась проволока, и когда ее прокаливали в вакууме, сначала кадмий, а потом ртуть полностью испарялись, оставляя тонкую нить из спеченного чистого вольфрама, который к тому же поддавался дальнейшей обработке. Вскоре процесс удалось модифицировать, чтобы обойтись без ртути, но, как вспоминал в 1960-х сам Кулидж, «без первого шага не было бы второго». В результате Кулидж получил признание (он позднее дослужился до вице-президента GE), а мир — дешевое и энергоэффективное электрическое освещение.   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 15.03.2018, 16:10    Заголовок сообщения: Ответить с цитатой

Почему на задней передаче автомобиль издаёт странный звук?

Итак, все мы слышали этот звук. Но почему автомобиль издаёт его только на задней передаче? Ответ заключается в некоторых особенностях конструкции коробки передач. Дело в том, что все передачи для движения вперёд оборудованы косозубыми шестернями, и лишь задняя передача — прямозубыми.

Косозубые шестерни располагаются под углом к оси вращения, а по форме образуют часть винтовой линии. Зацепление таких колёс происходит плавнее, чем у прямозубых, и с гораздо меньшим шумом. Площадь контакта увеличена по сравнению с прямозубой передачей, а значит и крутящий момент, передаваемый зубчатой парой, также больше.

Недостатками являются необходимость применения для установки вала упорных подшипников и увеличение площади трения зубьев, что вызывает потери мощности на нагрев и компенсируется применением специальных смазок. Прямозубые шестерни — самый распространённый вид зубчатых колёс. Их зубья расположены в радиальных плоскостях, а линия контакта зубьев обеих шестерен параллельна оси вращения.

При этом оси обеих шестерен также должны располагаться строго параллельно. Прямозубые колеса наиболее просты и имеют наименьшую стоимость, однако максимальный передаваемый крутящий момент у таких колёс ниже, чем у косозубых. Но для задней передачи это совсем не критично, не так ли? А ещё передаче с прямозубыми шестернями не нужны синхронизаторы для шестерен, что экономит ещё больше денег.

Шестерни косозубой ​​передачи всегда находятся в контакте друг с другом благодаря форме зубьев — такова их конструкция. В отличие от них, прямозубые шестерни имеют почти незаметный зазор. Непрерывный стук, который возникает при контакте таких зубчатых колёс друг с другом, превращается в этот неприятный для слуха воющий звук.   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 15.03.2018, 16:36    Заголовок сообщения: Ответить с цитатой

https://www.youtube.com/watch?v=qbcwdSSq5h4   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 19.03.2018, 13:54    Заголовок сообщения: Ответить с цитатой

https://www.youtube.com/watch?v=tFREvMazk18   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 19.03.2018, 13:54    Заголовок сообщения: Ответить с цитатой

https://www.youtube.com/watch?v=RIUEZ3AhrVE   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 19.03.2018, 13:56    Заголовок сообщения: Ответить с цитатой

Бактерии удивили учёных строением и возможностями своих молекулярных «двигателей»

Принято считать, что бактерии ‒ относительно примитивные создания. Но при ближайшем рассмотрении оказывается, что и эти одноклеточные существа устроены чрезвычайно сложно. Например, для перемещения в жидкой среде многие микробы используют жгутики, которые приводятся в действие при помощи крошечных молекулярных "моторов" размером в несколько десятков нанометров. Команда из Имперского колледжа Лондона впервые использовала трёхмерные модели, чтобы разобраться, как микроорганизмы развивали этот механизм и оттачивали технику плавания.
Может показаться удивительным, но двигательная система бактерий, состоящая из белковых молекул, делится на те же основные части, что и привычные для нас технические устройства. В предыдущих работах специалист по молекулярным механизмам Морган Биби (Morgan Beeby) и его коллеги выяснили, что "привод" жгутика имеет неподвижную статорную часть и вращающийся ротор. Кроме того, учёные обнаружили, что бактерии с более сложной структурой статора плавают быстрее. При этом генетический анализ показал, что разные "модели двигателя" связаны между собой эволюционно.
В новой работе учёные смогли проследить развитие бактериальных "моторов", объединив результаты исследования ДНК с трёхмерным моделированием. Это позволило им разобраться, как относительно простые системы со временем становились всё более сложными и в буквальном смысле набирали обороты.
Команда выявила чёткую разницу между наиболее примитивными и более сложными видами микробов. Если у первых статорная часть в среднем состоит из двенадцати элементов, то более развитые бактерии используют уже до семнадцати "деталей". Изучение генома наиболее древних микроорганизмов показало, что их статор также включал двенадцать частей.

"Когда мы наблюдаем эволюцию у животных или растений, мы видим, к примеру, как шея жирафа на протяжении времени медленно удлиняется, чтобы дотянуться до ранее недоступной пищи, – объясняет Биби в пресс-релизе. – Однако эволюция в молекулярном масштабе намного более радикальна. Это похоже на жирафа, дети которого родились с шеей на метр длиннее, чем у него".

Для создания трёхмерных изображений крошечных двигателей команда использовала метод криоэлектронной микроскопии, за разработку которого в 2017 году Жак Дубоше, Иоахим Франк и Ричард Хендерсон были удостоены Нобелевской премии по химии. Он позволяет замораживать молекулярные структуры внутри живых клеток, после чего их можно детально рассмотреть с разных сторон.
Затем исследователи создали "семейное древо" бактерий с указанием характеристик двигательной системы и плавательных способностей каждого вида. Тут-то и выяснилось, что в "моторе" организмов с семнадцатью и более деталями имеются дополнительные структуры, которых ранее никто не замечал. Эти элементы формируют усиленный каркас, способный поддерживать больше деталей статора, которые в совокупности сильнее вращают ротор и связанный с ним жгутик.
Интересно, что очень похожие структуры независимо развивались у разных групп микроорганизмов, а для их создания использовались разные белки. Это распространённое в природе явление называется конвергентной эволюцией, а в качестве примеров такого параллельного развития сходных признаков можно вспомнить появление кофеина в растениях и развитие нервной системы у гребневиков.
Биби считает, что с эволюционной точки зрения переход к более мощным молекулярным двигателям был так же неизбежен, как появление глаз и крыльев, которые много раз развивались у совершенно разных организмов. И дополнительные детали, усиливающие конструкцию, стали тем приспособлением, которое позволило бактериям улучшить свои плавательные способности.
С подробностями устройства двигательных систем бактерий на молекулярном уровне, а также с их техническими характеристиками можно ознакомиться, прочитав статью, опубликованную авторами исследования в издании Scientific Reports.   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 19.03.2018, 13:57    Заголовок сообщения: Ответить с цитатой

Проблема редактирования генов: возможно, у человека оно не работает\

На фоне последних событий в области генетики иногда кажется, что геном человека — это нечто вроде конструктора, система, свободно открытая к изменениям без какой-либо защиты собственной стабильности. Новое исследование вносит коррективы в эту точку зрения.


После открытия CRISPR, технологии по редактированию генов, казалось, что сейчас она изменит в медицине все, а ученые и врачи смогут без проблем менять геном, излечивая все виды генетических заболеваний без особых проблем с помощью простой неинвазивной процедуры. Таков был план, но CRISPR — это довольно сложная процедура, а при испытании на людях она и вовсе требует сложной инженерии. А тут еще ученые из Стэнфорда выяснили, что большинство людей могут иметь к CRISPR врожденный иммунитет.

Результаты пока находятся в стадии препринта, а значит, они еще не отрецензированы и не опубликованы в журнале, но сама статья уже привлекла огромное внимание экспертов в вопросах генетики.

Часть системы CRISPR происходит от бактерий. Конечно, CRISPR был модифицирован, но в основе своей он по-прежнему сохраняет бактериальную основу. А значит наша иммунная система может на него реагировать и атаковать.

В центре проблемы белок Cas9, именно он таргетирует и вырезает определенные отрезки ДНК. Без Cas9 CRISPR работать не будет, но именно с этим белком наши тела могут сражаться. Cas9 обычно находится во вредоносных бактериях, вроде Staphylococcus aureus и Streptococcus pyogenes, которые соответственно вызывают стафилококковые и стрептококковые инфекции, и обычно это хорошо, что наши тела блокируют его действие.

То есть при реакции человеческой иммунной системы все модификации с генами, сделанные с помощи CRISPR, могут просто не сработать. Существуют уже несколько трюков, которые исследователи используют для обхода иммунных реакций. Например, использовать CRISPR только вне тела или в местах, которые иммунные клетки достичь не могут. Тем не менее, возможно ученым придется заменить Cas9 на другой протеин, не активирующий иммунные системы организма. И если так будет, все исследования подобного рода будут отброшены на несколько лет назад.   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 19.03.2018, 14:00    Заголовок сообщения: Ответить с цитатой

Триод: основа всей электроники
В 1880 году Томас Эдисон, изучая причины отложения углерода на внутренних стенках лампы, вмонтировал в колбу еще один электрод. Измеряя ток между ним и угольной нитью, он обнаружил, что независимо от полярности приложенного напряжения ток этот имеет только одно направление. Объяснить это явление (сейчас оно называется термоэлектронной эмиссией) ни Эдисон, ни кто-либо другой тогда не могли (электрон был открыт Джозефом Томсоном только в1897году). Хотя великий изобретатель не увидел никакой пользы в этих приборах, он тем не менее получил на них патент, а эффект назвал собственным именем.


Джон Флеминг, сотрудник компании Эдисона в Лондоне, тоже изучал причины отложений на стенках лампы с 1883 по 1896 год. Потом он занялся другой работой и вернулся к этой теме только в 1904 году, будучи научным консультантом компании Маркони. Для приема радиоволн требовался детектор, и Флеминг предложил использовать те самые лампы Эдисона. При этом он обнаружил, что при протекании через нить накаливания переменного тока ток, снимаемый с дополнительного электрода, всегда остается постоянным. В заявке на патент Флеминг назвал такую лампу колебательным вентилем (это был прообраз вакуумного диода), а в 1905 году описал свои эксперименты в статье для Королевского научного общества.

Но вентиль, хотя и выглядел перспективным, все еще был слишком примитивным для практического применения, и руководство компании Marconi порекомендовало изобретателю отказаться от дальнейшей работы в этом направлении.

В результате плодами работы Флеминга воспользовался другой изобретатель — выпускник Йельского университета Ли де Форест, который с 1900 года без особого успеха экспериментировал с различными детекторами. Летом 1905 года де Форесту попал в руки журнал «Труды Королевского общества» со статьей Джона Флеминга, посвященной колебательному вентилю. Осенью этого же года де Форест заказал несколько реплик прибора Флеминга — с латунным цоколем, угольной нитью и никелевой пластиной в качестве второго электрода. В декабре он уже подал заявку на патент «статического вентиля для беспроводного телеграфа», а чуть погодя- еще одну, на прибор под названием «аудион». Однако, несмотря на некоторые отличия, это были всего лишь небольшие модификации вентиля Флеминга.

А вот следующее изобретение Ли де Фореста было полностью его собственным, и именно оно принесло ему мировую славу и звание «отца радиовещания». После множества неудачных экспериментов изобретатель решил вставить между нитью накаливания и пластиной никелевую зигзагообразную нить, которую он назвал сеткой. Подавая на эту нить положительный потенциал, можно было разгонять поток электронов с нити накаливания, попадающий на пластину, а отрицательный потенциал «закрывал» вентиль. Хотя сам изобретатель имел весьма туманное представление о принципах, лежащих в основе работы прибора (его теории позднее оказались ошибочными), лампа де Фореста, в отличие от вентиля Флеминга, позволяла не только детектировать, но и усиливать сигнал. Так был изобретен триод, положивший начало новой отрасли техники — электронике.   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 19.03.2018, 14:09    Заголовок сообщения: Ответить с цитатой

Самые необычные концепции Вселенной: прав ли Эйнштейн?
Помимо классических космологических моделей общая теория относительности позволяет создавать и очень, очень, очень экзотические воображаемые миры.


Обсудить 110
Нравится 322
Существует несколько классических космологических моделей, построенных с помощью ОТО, дополненной однородностью и изотропностью пространства (см. «ПМ» № 6'2012). Замкнутая вселенная Эйнштейна имеет постоянную положительную кривизну пространства, которая приобретает статичность благодаря введению в уравнения ОТО так называемого космологического параметра, действующего как антигравитационное поле. В расширяющейся с ускорением вселенной де Ситтера с неискривленным пространством нет обычной материи, но она тоже заполнена антигравитирующим полем. Существуют также закрытая и открытая вселенные Александра Фридмана; пограничный мир Эйнштейна — де Ситтера, который с течением времени постепенно снижает скорость расширения до нуля, и наконец, растущая из сверхкомпактного начального состояния вселенная Леметра, прародительница космологии Большого взрыва. Все они, и особенно леметровская модель, стали предшественницами современной стандартной модели нашей Вселенной.

Пространство вселенной в различных моделях имеет различную кривизну, которая может быть отрицательной (гиперболическое пространство), нулевой (плоское Евклидово пространство, соответствует нашей Вселенной) или положительной (эллиптическое пространство). Первые две модели — открытые вселенные, расширяющиеся бесконечно, последняя — закрытая, которая рано или поздно сколлапсирует. На иллюстрации сверху вниз показаны двумерные аналоги такого пространства.

Есть, однако, и другие вселенные, тоже порожденные весьма креативным, как сейчас принято говорить, использованием уравнений ОТО. Они куда меньше соответствуют (или не соответствуют вовсе) результатам астрономических и астрофизических наблюдений, но нередко весьма красивы, а подчас и элегантно парадоксальны. Правда, математики и астрономы напридумывали их в таких количествах, что нам придется ограничиться лишь несколькими самыми интересными примерами воображаемых миров.

От струны к блину
После появления (в 1917 году) основополагающих работ Эйнштейна и де Ситтера многие ученые стали пользоваться уравнениями ОТО для создания космологических моделей. Одним из первых это сделал нью-йоркский математик Эдвард Казнер, опубликовавший свое решение в 1921 году.

Его вселенная очень необычна. В ней нет не только гравитирующей материи, но и антигравитирующего поля (другими словами, отсутствует эйнштейновский космологический параметр). Казалось бы, в этом идеально пустом мире вообще ничего не может происходить. Однако Казнер допустил, что его гипотетическая вселенная неодинаково эволюционирует в разных направлениях. Она расширяется вдоль двух координатных осей, но сужается вдоль третьей оси. Посему это пространство очевидным образом анизотропно и по геометрическим очертаниям похоже на эллипсоид. Поскольку такой эллипсоид растягивается в двух направлениях и стягивается вдоль третьего, он постепенно превращается в плоский блин. При этом казнеровская вселенная отнюдь не худеет, ее объем увеличивается пропорционально возрасту. В начальный момент этот возраст равен нулю — и, следовательно, объем тоже нулевой. Однако вселенные Казнера рождаются не из точечной сингулярности, как мир Леметра, а из чего-то вроде бесконечно тонкой спицы — ее начальный радиус равен бесконечности вдоль одной оси и нулю вдоль двух других.

Почему мы гуглим

Эдвард Казнер был блестящим популяризатором науки — его книгу «Математика и воображение», написанную в соавторстве с Джеймсом Ньюманом, переиздают и читают и поныне. В одной из глав, появляется число 10100. Девятилетний племянник Казнера придумал этому числу название — гугол (Googol), а уж вовсе невообразимо исполинское число 10Googol — окрестил термином гуголпекс (Googolplex). Когда стэнфордские аспиранты Ларри Пейдж и Сергей Брин пытались найти имя своему поисковику, их приятель Шон Андерсон порекомендовал всеобъемлющий Googolplex. Однако Пейджу больше понравился более скромный Googol, и Андерсон немедленно взялся проверять, можно ли использовать его в качестве интернетного домена. В спешке он сделал опечатку, и отправил запрос не на Googol.com, а на Google.com. Это имя оказалось свободным и настолько понравилось Брину, что они с Пейджем тут же зарегистрировали его 15 сентября 1997 года. Случись по‑иному, мы бы не гуглили!

В чем секрет эволюции этого пустого мира? Поскольку его пространство по‑разному «сдвигается» вдоль разных направлений, возникают гравитационные приливные силы, которые и определяют его динамику. Казалось бы, от них можно избавиться, если уравнять скорости расширения по всем трем осям и тем самым ликвидировать анизотропность, однако математика подобной вольности не допускает. Правда, можно положить две из трех скоростей равными нулю (иначе говоря, зафиксировать размеры вселенной по двум координатным осям). В этом случае казнеровский мир будет расти лишь в одном направлении, причем строго пропорционально времени (это легко понять, поскольку именно так обязан увеличиваться его объем), но это и все, чего мы можем добиться.

Вселенная Казнера может оставаться сама собой только при условии полной пустоты. Если в нее добавить немного материи, она постепенно станет эволюционировать подобно изотропной вселенной Эйнштейна — де Ситтера. Точно так же при добавлении в ее уравнения ненулевого эйнштейновского параметра она (с материей или без нее) асимптотически выйдет на режим экспоненциального изотропного расширения и превратится во вселенную де Ситтера. Однако такие «добавки» реально изменяют только эволюцию уже возникшей вселенной. В момент ее рождения они практически не играют роли, и вселенная эволюционирует по одному и тому же сценарию.

Хотя казнеровский мир динамически анизотропен, его кривизна в любой момент времени одинакова по всем координатным осям. Однако уравнения ОТО допускают существование вселенных, которые не только эволюционируют с анизотропными скоростями, но и обладают анизотропной кривизной. Такие модели в начале 1950-х годов построил американский математик Абрахам Тауб. Его пространства могут в одних направлениях вести себя как открытые вселенные, а в других — как замкнутые. Более того, с течением времени они могут поменять знак с плюса на минус и с минуса на плюс. Их пространство не только пульсирует, но и буквально выворачивается наизнанку. Физически эти процессы можно связать с гравитационными волнами, которые столь сильно деформируют пространство, что локально изменяют его геометрию от сферической к седловидной и наоборот. В общем, странные миры, хотя и математически возможные.

В отличие от нашей Вселенной, которая расширяется изотропно (то есть с одинаковой скоростью независимо от выбранного направления), вселенная Казнера одновременно и расширяется (по двум осям), и сжимается (по третьей).

Колебания миров

Вскоре после публикации работы Казнера появились статьи Александра Фридмана, первая — в 1922 году, вторая — в 1924-м. В этих работах были представлены удивительно элегантные решения уравнений ОТО, оказавшие чрезвычайно конструктивное воздействие на развитие космологии. В основе концепции Фридмана лежит предположение, что в среднем материя распределена по космическому пространству максимально симметрично, то есть полностью однородно и изотропно. Это означает, что геометрия пространства в каждый момент единого космического времени одинакова во всех его точках и по всем направлениям (строго говоря, такое время еще надо правильным образом определить, но в данном случае эта задача разрешима). Отсюда следует, что скорость расширения (или сжатия) вселенной в любой заданный момент опять-таки не зависит от направления. Фридмановские вселенные поэтому совершенно непохожи на модель Казнера.

В первой статье Фридман построил модель закрытой вселенной с постоянной положительной кривизной пространства. Этот мир возникает из начального точечного состояния с бесконечной плотностью материи, расширяется до некоторого максимального радиуса (и, следовательно, максимального объема), после чего снова схлопывается в такую же особую точку (на математическом языке — сингулярность).

Однако Фридман на этом не остановился. По его мнению, найденное космологическое решение отнюдь не обязательно ограничивать промежутком между начальной и конечной сингулярностью, его можно продолжить во времени как вперед, так и назад. В результате получается бесконечная гроздь нанизанных на временную ось вселенных, которые граничат друг с другом в точках сингулярности. На языке физики это означает, что закрытая вселенная Фридмана может бесконечно осциллировать, погибая после каждого сжатия и возрождаясь к новой жизни в последующем расширении. Это строго периодический процесс, поскольку все осцилляции продолжаются одинаково долго. Поэтому каждый цикл существования вселенной — точная копия всех прочих циклов.

Вот как прокомментировал эту модель Фридман в своей книге «Мир как пространство и время»: «Возможны, далее, случаи, когда радиус кривизны меняется периодически: вселенная сжимается в точку (в ничто), затем снова из точки доводит радиус свой до некоторого значения, далее опять, уменьшая радиус своей кривизны, обращается в точку и т. д. Невольно вспоминается сказание индусской мифологии о периодах жизни; является возможность также говорить о «сотворении мира из ничего», но все это пока должно рассматриваться как курьезные факты, не могущие быть солидно подтвержденными недостаточным астрономическим экспериментальным материалом».

Так необычно выглядит график потенциала вселенной Mixmaster — потенциальная яма имеет высокие стенки, между которыми расположены три «долины». Внизу — эквипотенциальные кривые такой «вселенной в миксере».

Через несколько лет после публикации статей Фридмана его модели обрели известность и признание. Идеей осциллирующей вселенной серьезно заинтересовался Эйнштейн, да и не он один. В 1932 году за нее взялся Ричард Толман, профессор математической физики и физической химии Калтеха. Он не был ни чистым математиком, как Фридман, ни астрономом и астрофизиком, как де Ситтер, Леметр и Эддингтон. Толман был признанным специалистом по статистической физике и термодинамике, которую он впервые объединил с космологией.

Результаты оказались очень нетривиальными. Толман пришел к выводу, что общая энтропия космоса от цикла к циклу должна возрастать. Накопление энтропии приводит к тому, что все большая часть энергии вселенной концентрируется в электромагнитном излучении, которое от цикла к циклу все сильнее и сильнее влияет на ее динамику. Из-за этого протяженность циклов увеличивается, каждый следующий становится дольше предыдущего. Осцилляции сохраняются, но перестают быть периодическими. К тому же в каждом новом цикле радиус толмановской вселенной возрастает. Следовательно, в стадии максимального расширения она имеет наименьшую кривизну, а ее геометрия все больше и больше и на все более и более длительное время приближается к евклидовой.

Ричард Толман при конструировании свой модели упустил одну интересную возможность, на которую в 1995 году обратили внимание Джон Барроу и Мариуш Домбровский. Они показали, что колебательный режим вселенной Толмана необратимо разрушается при введении антигравитационного космологического параметра. В этом случае толмановская вселенная на одном из циклов уже не стягивается в сингулярность, а расширяется с растущим ускорением и превращается во вселенную де Ситтера, что в аналогичной ситуации также делает и вселенная Казнера. Антигравитация, как и усердие, превозмогает все!

Умножение сущностей

«Естественная задача космологии заключается в том, чтобы как можно лучше понять возникновение, историю и устройство нашей собственной Вселенной, — объясняет «Популярной механике» профессором математики Кембриджского университета Джон Барроу. — В то же время ОТО даже без заимствований из других разделов физики позволяет рассчитать почти неограниченное количество самых разных космологических моделей. Конечно, выбор их производится на основе астрономических и астрофизических данных, с помощью которых можно не только протестировать различные модели на соответствие реальности, но и решить, какие из их компонентов можно объединить для наиболее адекватного описания нашего мира. Именно так возникла нынешняя стандартная модель Вселенной. Так что даже только по этой причине исторически сложившееся разнообразие космологических моделей оказалось очень полезным.

Но дело не только в этом. Многие модели были созданы, когда астрономы еще не накопили того богатства данных, которым располагают сегодня. Например, подлинная степень изотропии Вселенной была установлена благодаря космической аппаратуре лишь в течение пары последних десятилетий. Понятно, что в прошлом у модельеров Космоса было много меньше эмпирических ограничений. Кроме того, не исключено, что даже экзотические по нынешним меркам модели в будущем пригодятся для описания тех частей Вселенной, которые пока еще недоступны для наблюдения. И, наконец, изобретение космологических моделей может просто подтолкнуть стремление отыскать неизвестные решения уравнений ОТО, а это тоже мощный стимул. В общем, изобилие таких моделей вполне объяснимо и оправдано.

Точно так же оправдан и недавно состоявшийся союз космологии и физики элементарных частиц. Его представители рассматривают самую раннюю стадию жизни Вселенной как естественную лабораторию, идеально пригодную для изучения основных симметрий нашего мира, определяющих законы фундаментальных взаимодействий. Этот союз уже положил начало целому вееру принципиального новых и очень глубоких космологических моделей. Нет сомнения, что и в будущем он принесет не менее плодотворные результаты».


Вселенная в Миксере
В 1967 году американские астрофизики Дэвид Уилкинсон и Брюс Партридж обнаружили, что открытое тремя годами ранее реликтовое микроволновое излучение с любого направления приходит на Землю практически с одинаковой температурой. С помощью высокочувствительного радиометра, изобретенного их соотечественником Робертом Дике, они показали, что колебания температуры реликтовых фотонов не превышают десятой доли процента (по современным данным они гораздо меньше). Поскольку это излучение возникло ранее 4 00 000 лет после Большого взрыва, результаты Уилкинсона и Партриджа давали основание считать, что если даже наша Вселенная и не была почти идеально изотропна в момент рождения, то она обрела это свойство без большой задержки.

Данная гипотеза составила немалую проблему для космологии. В первые космологические модели изотропность пространства закладывали с самого начала просто как математическое допущение. Однако еще в середине прошлого века стало известно, что уравнения ОТО позволяют построить множество неизотропных вселенных. В контексте этих результатов практически идеальная изотропность реликтового излучения потребовала объяснения.

Такое объяснение появилось лишь в начале 1980-х годов и оказалось совершенно неожиданным. Оно было построено на принципиально новой теоретической концепции сверхбыстрого (как обычно говорят, инфляционного) расширения Вселенной в первые мгновения ее существования (см. «ПМ» № 7'2012). Во второй половине 1960-х годов наука до столь революционных идей просто не дозрела. Но, как известно, за неимением гербовой бумаги пишут на простой.

Крупный американский космолог Чарльз Мизнер сразу после публикации статьи Уилкинсона и Партриджа попробовал объяснить изотропию микроволнового излучения с помощью вполне традиционных средств. Согласно его гипотезе, неоднородности ранней Вселенной постепенно исчезли из-за взаимного «трения» ее частей, обусловленного обменом нейтринными и световыми потоками (в своей первой публикации Мизнер назвал этот предполагаемый эффект нейтринной вязкостью). По его мысли, такая вязкость способна быстро сгладить изначальный хаос и сделать Вселенную почти идеально однородной и изотропной.

Исследовательская программа Мизнера выглядела красиво, но практических результатов не принесла. Главная причина ее неудачи опять-таки была выявлена с помощью анализа микроволнового излучения. Любые процессы с участием трения генерируют тепло, это элементарное следствие законов термодинамики. Если бы первичные неоднородности Вселенной были сглажены благодаря нейтринной или какой-то иной вязкости, плотность энергии реликтового излучения значительно отличалась бы от наблюдаемой величины.

Как показали в конце 1970-х годов американский астрофизик Ричард Матцнер и его уже упоминавшийся английский коллега Джон Барроу, вязкие процессы могут устранить лишь самые мелкие космологические неоднородности. Для полного «разглаживания» Вселенной требовались другие механизмы, и они были найдены в рамках инфляционной теории.

Но все же Мизнер получил немало интересных результатов. В частности, в 1969 году он опубликовал новую космологическую модель, имя которой позаимствовал… у кухонного электроприбора, домашнего миксера производства компании Sunbeam Products! Mixmaster Universe все время бьется в сильнейших конвульсиях, которые, по мысли Мизнера, заставляют циркулировать свет по замкнутым путям, перемешивая и гомогенизируя ее содержимое. Однако позднейший анализ этой модели показал, что, хотя фотоны в мизнеровском мире и в самом деле совершают длительные путешествия, их смешивающее действие весьма незначительно.

Тем не менее Mixmaster Universe очень интересна. Подобно замкнутой вселенной Фридмана, она возникает из нулевого объема, расширяется до определенного максимума и вновь стягивается под действием собственного тяготения. Но эта эволюция не гладкая, как у Фридмана, а абсолютно хаотическая и посему совершенно непредсказуемая в деталях. В молодости эта вселенная интенсивно осциллирует, расширяясь по двум направлениям и сокращаясь по третьему — как у Казнера. Однако ориентации расширений и сжатий не постоянны — они хаотически меняются местами. Более того, частота осцилляций зависит от времени и по приближении к начальному мгновению стремится к бесконечности. Такая вселенная претерпевает хаотические деформации, подобно дрожащему на блюдечке желе. Эти деформации опять-таки можно интерпретировать как проявление движущихся в различных направлениях гравитационных волн, гораздо более буйных, чем в модели Казнера.

Mixmaster Universe вошла в историю космологии как самая сложная из воображаемых вселенных, созданных на базе «чистой» ОТО. С начала 1980-х годов наиболее интересные концепции подобного рода стали использовать идеи и математический аппарат квантовой теории поля и теории элементарных частиц, а затем, без большой задержки, и теории суперструн.   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Дмитро



Зарегистрирован: 02.03.2017
Сообщения: 513
Откуда: Киев

СообщениеДобавлено: 19.03.2018, 14:10    Заголовок сообщения: Ответить с цитатой

Российские физики обнаружили у жидких кристаллов эффект памяти

Сотрудники физического факультета МГУ имени М. В. Ломоносова совместно с российскими и зарубежными коллегами обнаружили эффект памяти в жидких кристаллах под действием сильных электрических полей.


Жидкие кристаллы — это особое состояние вещества, при котором последнее обладает характеристиками одновременно жидкостей и кристаллов и способно менять свои свойства под действием электрических полей. Выделяют два вида жидких кристаллов: закрученные в сложную спиральную структуру (холестерические) и вытянутые в нитевую структуру (нематические). Российские физики изучили капли спирально закрученных жидких кристаллов и выяснили, что при помещении в электрическое поле они «раскручиваются» в нить.

«Под воздействием электрического поля происходит практически полная раскрутка структуры капли хирального жидкого кристалла, и она становится подобной структуре капли нематического жидкого кристалла. После резкого выключения поля нитевая структура быстро возвращается в закрученное состояние», — рассказал Александр Емельяненко, один из авторов исследования, ведущий научный сотрудник кафедры физики полимеров и кристаллов физического факультета МГУ. Результаты исследования были опубликованы в престижном журнале Scientific Reports.

В результате серии экспериментов учёные выяснили, что при медленном выключении электрического поля капля жидкого кристалла не возвращается в исходное состояние, а принимает другую, более сложную структуру. Изменяя параметры электрического поля, можно получать различные структуры жидкого кристалла. Полученный результат может позволить создавать воспроизводимые состояния жидких кристаллов, а значит, записывать с их помощью информацию.

«Полученные результаты открывают возможности для обратимых переключений между различными структурами капель, что перспективно для развития материалов с эффектами памяти», — также пояснил учёный.

В работе принимали участие учёные из Института физики имени Л.В. Киренского Сибирского отделения РАН, Института инженерной физики и радиоэлектроники Сибирского федерального университета и Государственного университета Чэнгун (Тайвань).   
Вернуться к началу
Посмотреть профиль Отправить личное сообщение
Показать сообщения:   
Начать новую тему   Ответить на тему    Список форумов Wing Chun -> Общение Часовой пояс: GMT + 2
На страницу Пред.  1, 2, 3 ... 5, 6, 7 ... 9, 10, 11  След.
Страница 6 из 11

© 2010 Украинское Представительство Всемирной Винг Чунь Кунг Фу Ассоциации. Все права защищены.